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Integration to Increase Efficiency
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Innovation happens at the interface between disciplines.

Integrated systems require system-level analysis.

Computational Science and Engineering reduces cost and time,
but needs flexible tools

- for rapid prototyping

- to identify and fix mistakes early

New opportunities through C3:
Communication Computation Controls



Smoothness of Simulation Output

Small changes in input x should cause o(x) fx+Ae)-f(x)
small changes in output f(x). = = ’

ox'

Smooth results are required for

controls

optimization

analysis

numerical solvers

feedback linearization

state linearization

optimal control

nonlinear programming

pattern search methods

sensitivity

robustness

Newton-based solvers

integration algorithm for stiff systems
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Numerical “Noise” in EnergyPlus
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Discontinuities are caused by nested solvers with low precision.
(20+ nested solvers spread over 500,000 lines of code.)
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Numerical “Noise” in EnergyPlus

Failure if EnergyPlus is used to approximate f(-)

non-utilized corresponds to |

reductionin  $10,000 Tested Algorithms |
%] from f(zg) PO Ve higher | x simple GA |
A

operating costs a Coordinate Search
0.07 % s Hooke-Jeeves
0.06 —= — a PSO and Hooke-Jeeves (I/l)
0.05 —gt—tm————t— a Nelder-Mead (I/Il)
0.0...1 || L] ' - PSOCC ‘
0.03 " PSOCC on a mesh (l/”) ‘
0.01 81—+ .-I
0.0 -
0 1000 2000 3000 4000 5000 6000
number of simulations Source: Wetter and Wright, 2004

Automated analysis is not necessarily robust with existing simulation programs.

Do we need to rethink how we develop simulation programs?



Controls Oriented Modeling

Needs

[ 7]

Feedback control of states (temperature, pressure) not heating/cooling load
Code generation for control hardware
Freely programmable control sequences

- graphical block diagrams

- textual algorithms

- hierarchies to manage complexity and encapsulate functional blocks
Different models of computations

- continuous time

- discrete time

- finite state machine
Application programming interfaces (API) to tools used by controls engineers
Analysis capabilities

- linearization

- state initialization

- applicable for optimal control algorithms



Parallel Computing

Processor speed
New situation

» Hardware becomes parallel, CPU speed
stagnates.

> Floating point operation is cheap, memory P

access is expensive. | 4//

EnergyPlus
> Rewrite 500,000 lines of code? Source: Asanovic et al., 2006
- race conditions Floating point operations
- memory management... ' '
» Very expensive proposition.
> No formal verification possible.
Equation-based languages
> Write analyzable code.

» Use language constructs to map subsystem
models to processors.

» Change code generators to map strongly
coupled equation systems to processors. 2003 2008 2005 2006 2007

e (vs. VAX-11/780)
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Modeling of Physical Systems

Higher-level of abstraction to Block diagram modeling = 1990
- increase productivity —
- facilitate model-reuse Bl s 1
- preserve system topology
- enable analysis T
- generate code for target ™ —o H
hardware el
Procedural modeling = 1970 = L ~ B g0
el eeivten. pursmter 3 thln + 1190 ¢ Fins) 1im f
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Separation of Concerns

Modeling
' ] i J =
e ' /
Ejj" ‘—_—_ > 10
1 st [T =] massd

Compilation & Simulation

Simulation Mod

l'.\ll

Interface

Describes the phenomena

» Standardized interfaces

» Acausal models

» Across & through variables
» Hierarchical modeling

» Class inheritance

Program Qeon o laten

|
|
|

Run-time Figure adapted from

Interface Cellier and Kofman (2006)

Solves the equations
» Partitioning
> Tearing
> |nline integration
» Adaptive solver
- Integration
- Nonlinear equations
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Model Development Time

. : Labor time
Modelica vs. C/C++ , , ,
Number of source code lines
Storage size of source code

. \ Labor time engineer 1
Modelica vs. Fortran ‘ . =
Labor time engineer 2
Labor time engineer 3

A . [Labor time
NMF vs. Fortran ‘

| | | >
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Relative reduction in code size or labor time
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@

Building simulation programs are not designed for multi-disciplinary
analysis
Controls has wrong semantics
Many modern building systems cannot be analyzed
Adding models takes months
Tools were not developed for
- automated analysis
- Innovative systems
Sharing models & data is hard

Limited educational benefits due to black-box models and outdated
technologies

Heavy reliance on expensive and slow full scale experiments
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Overview
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» Mono-Simulation with Modelica

Modelica Standard Library - LBNL Buildings Library - Applications

» Co-Simulation with Building Controls Virtual Test Bed
Analysis - Building Controls Virtual Test Bed - Applications

» R&D Needs
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Modelica Buildings Library
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What is Modelica

YLl

> Object-oriented equation-based language MODELICA

> |cons with standardized interfaces encapsulate differential,
algebraic and discrete equations

» Developed since 1996 because conventional approach for
modeling was inadequate for integrated engineered systems

> Well positioned to become de-facto open standard for
modeling multi-engineering systems

- ITEAZ2: 285 person years investment over next three years.

standardized modeling

language & graphical C code
representatiOn conductor

: _}.' 1 | executable

C*der (T)=Q flow . SOIVer
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Modelica Standard Library. 1300 models & functions.
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LBNL Buildings Library. 100 models and functions.

Provides HVAC specific models based on Modelica.Fluids library
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Usage Levels

Model user Drags & drops component models to form system model

l senCO2  .orF con mot
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Reuses base models to implement new models

1

0
Y

Model developer

Q flow = QO_flow * u;
mXi_flow = zeros(Medium.nXi);

Library developer Develops base models for characteristic components

port _a.m _flow*port b.h outflow +

port b.m flow*inStream(port a.h outflow) = Q flow;
port _a.m _flow + port b.m flow = -sum(mXi_flow);
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Applications

1) Rapid prototyping
Analyzed novel hydronic heating system with
radiator pumps and hierarchical system
controls.

2) Supervisory controls
Simulated & auto-tuned “trim and response”

sequence for variable air volume flow systems. | 1o E———>TT1]
E = o= —
E. t ' tL _‘|
3) Local loop controls Ciiav oo i e v eemmen s
Reused high-order model for controls design in | == . -
frequency domain. | o -l
e
— i
D —— o ! @
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Rapid Prototyping: Wilo GENIAX (Introduction 2009)

<
Original system model After symbolic manipulations
2400 components 300 state variables

13,200 equations 8,700 equations




Rapid Prototyping: Wilo GENIAX (Introduction 2009)
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Rapid Prototyping: Wilo GENIAX (Introduction 2009)
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Rapid Prototyping: Wilo GENIAX (Introduction 2009)
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Rapid Prototyping: Wilo GENIAX (Introduction 2009)

Thermostatic radiator valves

Boiler set point, supply and return temperatures
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Radiator pumps

Boiler set point, supply and return temperatures
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| N bbhap?"]

0 2 4 6 8 10 12 14 16 18 20 22 24

Reproduced trends published by Wilo.

Developed boiler model, radiator model, simple room model and both

system models in one week.
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Appllcatlons VAV System Controls

i e— BN VAV System

T- - TTF 4} (ASHRAE 825-RP)

Trim & response control for fan
roo J static pressure reset

bouln] - . (Taylor, 2007)
0

Te L ansiilh =

Original system model
730 components

—'j i;‘:‘ : 4,420 equations
a_. — 0 40 state variables
13
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Applications — VAV System Controls

Stabilized control and reduced energy by solving optimization problem with state constraints
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Applications — Feedback Loop Stability

Heat exchanger feedback control

2632 equations
40 states

37x37 (linear) + 6x6 (nonlinear) ‘ 0 (linear) + 2x2 (nonlinear)
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Applications — Feedback Loop Stability

>—

Phase (deq) Magnitude (dB)

time in minutes



Overview

")

» Co-Simulation with Building Controls Virtual Test Bed
Analysis - Building Controls Virtual Test Bed - Applications

» R&D Needs
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Building Controls Virtual Test Bed (BCVTB)

Enable R Y T i NeCE

e®Co-simulation for integrated multi- = - i o
disciplinary analysis h\ Foae oL o
eUse of domain-specific tools S

®Model-based system-level design Building Controls Virtual Test Bed
®Model-based operation g 3 w—

Available from St s s e SCITS Lot
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Functional Domains & Coupled Tools

Middle-ware that exchanges and synchronizes data as (simulation-)time progresses

ildi HVAC & controls
building energy building energy controls
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TRNSYS  —o9YTL : Simufink
:_—" : == ‘ | - Fhe G8¢ Vew Smustcn Fomat Toou bep
B D hs o=
| ‘ e | :
airflow controls & data analysis

Fluent

MATLAB

a

{

©

lighting wireless networks

Radiance R - - Ptolemy Il
, i'.
/,, / \ v*vw
e / \
building energw/ : bl}\{ding autontation real-time data
hardwar' in www+xml
=oP '/ i BAQnet — implemented
| I v - - -. funded

2 'S 7 P in proposal
>Pe@ - in discussion




Simple Example: Room Heater

Set point —:o— Controller Plant —>

Controller: Discrete time proportional controller
y(k 4+ 1) = max(0,min(1, K, (Tser —1'(k))))
Plant: Room model

Tk + 1) = T(k) + 2 (UA Lo~ T(8) + Qou(h))
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Simple Example: Room Heater

+
Set point —>@ Controller Plant —

I.

Discrete Time Proportional Controller
y(k+ 1) = max(0, min(1, K, (Tser — 1'(k))))

Implementation in Simulink

— vk +1) T (k)
20 1 — P — [——ridblin dblOut |
Z
Constant Gain Saturation Unit Delay
BCWTE
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Simple Example: Room Heater

Set point ;0 Controller Plant —

1.

Room model

Tk 4 1) = T(k) + o (UA(Tous = T(R)) + Qo y(k) )

Implementation in Modelica

T(k+1)

35




Simple Example: Room Heater
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BCVTB Architecture

Simulink

BCVTB BCVTB
C library C library

configuration

configuration

BSD Socket UKl BSD Socket [l BSD Socket I BSD Socket
Client Server Server Client
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Co-Simulation Analysis

1) Does numerical solution of co-simulation converge to
solution of differential equation?

2) How does exchanged data affect stability?

3) Is strong coupling or loose coupling more efficient?

38



Co-Simulation Analysis

Does numerical solution of co-simulation converge to
solution of differential equation?
Consistency + stability = convergence

Consistency
a) Definition: Local Truncation Error, LTE = error produced in
one integration step (starting from exact solution)

b) Definition: Unit Local Truncation Error,
LTE(At)
At

c) Theorem: ||[ULTE,(At)|| < ||[ULTE(At?)| + o L At

ULTE(At) =

Stability
d) Theorem: Co-simulation is (conditionally) stable.

Details: See Trcka, Hensen, Wetter 2009
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Co-Simulation Analysis

How does exchanged data affect stability?

T(E+) - T4 () o 22

(HQ(S) — Hl(S)) dS
&

Couple to states with large capacity.

Instability typically happens after setpoint changes. .



Co-Simulation Analysis

Is strong coupling or loose coupling more efficient?

Strong coupling Loose coupling
I
TR
b, -
Requires iteration across simulators. No iteration across simulators.
Requires rewinding states. Requires smaller time steps.
time step [s] | ——
computing time [s] [ 13 B Strong coupling
" Loose coupling
O 5 10 I5 20 25 30 41

Details: See Trcka, Wetter, Hensen 2007



Ex: Controls in Simulink, Building in EnergyPlus
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Demonstration
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Reusable modules for model-based operation

e e e g, e e L tampes e " . rgve= -

Tool selection depends on required Hybrid systems,
- model resolution emulate actual
- emulation of actual control & operation feedback control
- dynamics of equipment T ol
- analysis capabilities o
R A
- smoothness wwwixm| o *
- state initialization Ay o
- A
. - JgEi
‘pgat T B
Discrete time,
idealized controls
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» R&D Needs
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R&D Needs

Integration across disciplines

- model-based, system-level
design processes
- design for robustness

Equation-based object-oriented modeling

- standardized libraries
- computationally efficient
and robust model

MoDELICA

formulation
- code generation for "
controls
L
Optimization GanOpt

) . . . Generic Optimization Program
- integration with design tools

- parallel algorithms
(with cloud computing)
- stochastic optimization

Co-simulation

- adaptive step size ' g- -

- semantics of exchanged data .

- standardized data exchange ﬁﬂ
&.:‘6

- distributed computing
e

o)BACnet

Equation-based object-oriented simulation

- multi-rate solvers
- mapping equations to
parallel hardware

Downloads and further information:
http.//simulationresearch.Ibl.gov/wetter
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